Maximal amenable von Neumann subalgebras arising from maximal amenable subgroups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Titles and Abstracts of Talks Title: Derivations on Von Neumann Algebras and L 2 -cohomology Title: Maximal Amenable Von Neumann Subalgebras Arising from Amenable Subgroups

Consider a maximal amenable subgroup H in a discrete countable group G. In this talk I will give a general condition implying that the von Neumann subalgebra LH is still maximal amenable inside LG. The condition is expressed in terms of H-invariant measures on some compact G-space. As an example I will show that the subgroup of upper triangular matrices inside SL(n,Z) gives rise to a maximal am...

متن کامل

Amenable Representations and Finite Injective Von Neumann Algebras

Let U(M) be the unitary group of a finite, injective von Neumann algebra M . We observe that any subrepresentation of a group representation into U(M) is amenable in the sense of Bekka; this yields short proofs of two known results—one by Robertson, one by Haagerup—concerning group representations into U(M). A unitary representation π of a group Γ on a Hilbert space Hπ is amenable if there exis...

متن کامل

Non-elementary amenable subgroups of automata groups

We consider groups of automorphisms of locally finite trees, and give conditions on its subgroups that imply that they are not elementary amenable. This covers all known examples of groups that are not elementary amenable and act on the trees: groups of intermediate growths and Basilica group, by giving a more straightforward proof. Moreover, we deduce that all finitely generated branch groups ...

متن کامل

Maximal Nonfinitely Generated Subalgebras

We show that “every countable algebra with a nonfinitely generated subalgebra has a maximal nonfinitely generated subalgebra” is provably equivalent to ’1-CA0 over RCA0.

متن کامل

Counting Maximal Arithmetic Subgroups

for absolute constants C6, C7. This theorem (almost) follows from [EV, Theorem 1.1], the only point being to control the dependence of implicit constants on the degree of the number field. We refer to [EV] for further information and for some motivational comments about the method. In the proof C1, C2, . . . will denote certain absolute constants. A.2. Let K be an extension of Q of degree d ≥ 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometric and Functional Analysis

سال: 2015

ISSN: 1016-443X,1420-8970

DOI: 10.1007/s00039-015-0348-1